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From general object grasping [13] to in-hand manipula-
tion [20], learning has enabled a number of exciting robotic
manipulation capabilities in recent years. Despite this, the
quintessential home robot that can enter a previously unseen
home environment and complete a wide range of tasks like
humans can is far from a reality. While there are many
problems to solve in accomplishing this goal, one of the central
bottlenecks lies in learning control policies that can generalize
to new tasks, objects, and environments. For example, a robot
cooking in a home cannot afford to re-learn from scratch for
each new dish, nor is it feasible to hard-code state features for
every new kitchen a robot might encounter.

One potential route to accomplishing this generalization
is to train the robot on a wide distribution of data that
contains many tasks, objects, and environments. Indeed, this
recipe of large, diverse datasets combined with scalable offline
learning algorithms (e.g. self-supervised or cheaply supervised
learning) has been the key behind recent successes in NLP
[7, 2] and vision [6, 21]. However, directly extending this
recipe to robotics is nontrivial, as we neither have sufficiently
large and diverse datasets of robot interaction, nor is it obvious
what types of learning algorithms or sources of supervision can
enable us to scalably learn useful skills from these datasets.

The goal of my research lies in tackling these challenges,
and replicating the recipe of large-scale data and learning
in the context of robotic manipulation. Towards this goal
my research has focused on three key questions. First, how
do we scalably collect large and diverse datasets of robots
interacting in the physical world? Second, how do we design
self-supervised reinforcement learning algorithms that can
consume such broad data, which may come from non-experts
and lack reward labels, and from it learn to reach unseen goals.
Third, how might we unlock the broad sources of data that
exist on the web, like videos of humans and natural language
to enable more effective learning in our robots?

Scaling Robotic Manipulation Datasets. The first chal-
lenge lies in acquiring large amounts of useful robotic interac-
tion data, a particularly difficult problem in robotic manipula-
tion. One approach to tackling this is having humans explicitly
collect meaningful interaction via teleoperation [14, 15, 12],
however this can be difficult to do at scale due to the immense
burden it places on the human operator.

As an alternative to human collected data, in our first paper
on the topic we collected a large, 15 million frame dataset
of robot interaction through autonomous data collection [5].
This dataset spanned multiple universities and robots, and
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Fig. 1. Weakly-Supervised Autonomous Data Collection. Using
just a few minutes of human supervision, our method is able to guide
robotic exploration towards more meaningful interactions..

in our experiments we found that pre-training on it enabled
significantly faster adaptation to a completely unseen robot
and scene. However, a limitation of this work is that due to
being fully unsupervised, the data contained primarily object
picking/pushing, but lacked more interesting behaviors.

Motivated by this, in our follow up work [4] we studied
how to balance this tradeoff between (a) the scalability of
autonomous collection with (b) a prior over meaningful in-
teraction from human supervision. Our key insight is that
by leveraging some weak human supervision, we can allow
the agent to focus on semantically relevant parts of the state
space, greatly accelerating the collection of useful data while
still keeping the data collection process fully autonomous.
Specifically, a human can communicate a prior over relevant
states by simply capturing a handful of images of “interesting”
states ahead of time, which a learning-based agent can then use
to guide their exploration. Using this approach, our proposed
algorithm interacts more than twice as often with relevant
objects than prior state-of-the-art unsupervised exploration
methods, and as a result collects higher-quality data enabling
better downstream, task performance. With less than 3 min-
utes of human supervision, it can collect high quality data
autonomously for multiple days on hard exploration problems
from pixels on a Franka Emika Panda robot (See Figure 1).

Self-Supervised Reinforcement Learning Algorithms.
Given a large and diverse dataset of robotic interaction, the
second challenge lies in effectively learning behavior from
such data, such that the learned agent can generalize to a large
number of possibly unseen tasks. Towards this goal, a large
portion of my prior work has studied self-supervised offline
reinforcement learning, where given a non-expert dataset of
interaction, the agent aims to learn a visuomotor policy π(s, g)
that can reach goals g, specified by images. Notably, such
self-supervised methods do not need reward labels and can
consume non-expert data, making them ideal candidates to
learn from broad, pre-collected datasets. One such algorithm
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Fig. 2. In [18] we learn language-conditioned visuomotor policies us-
ing sub-optimal offline data and crowd-sourced annotation, enabling
a real robot to complete natural language specified tasks.

is visual foresight [9, 8], which takes a model-based planning
approach to this problem, learning a visual dynamics model,
and performs model-predictive control (MPC) to plan to reach
goals. Towards improving such algorithms, my prior work has
included a number of techniques for learning better visual
dynamics models, including conditioning them on goals to
better model goal relevant quantities [17], and designing better
architectures and training procedures for video prediction
models [23, 1]. Moreover, several of my prior works have
studied how to extend the visual foresight framework to handle
more challenging, long-horizon tasks. For example in [16], we
studied how we could learn a generative model over images
in a self-supervised way, and use it to perform collocation
based planning in visual space, solving long-horizon tasks
and generating visually interpretable subgoals. In [22] we
extended this line of work by learning functional distances
using self-supervised goal-conditioned Q-learning, and using
the learned Q function as a cost function for model-predictive
control. Finally, in our most recent follow up work [24], we
learn individual skills using an approach similar to [22], then
combine these skills with a symbolic planner to complete long-
horizon planning problems with over 250 steps.

Supervising Robot Learning with Language and Video
from the Web. While this recipe of autonomous data collec-
tion + self-supervised offline reinforcement learning can scale
well with size and diversity of data, it has some important
limitations. Critically, without any human supervision, it is
forced to model everything about a scene (including task-
irrelevant features), ultimately limiting performance. Captur-
ing task relevance requires some supervision, and a focus of
my recent work is on how we can supervise task relevance
in a scalable way, by leveraging data that can easily be
collected through the web. In my recent work [18], we found
that simply by using crowd-sourcing and having annotators
describe in natural language what was happening in a video
of the robot, we could learn reward functions for learn-
ing language-conditioned control (See Figure 2). Moreover,
this work showed that with crowd-sourced language we can
achieve significantly improved performance over fully self-
supervised approaches, with limited impact on scalability.

While the prior work I have described is able to consume
large amounts of robot data and generalize to new goals, it

Fig. 3. In [3] we learn a video-conditioned reward function on diverse
videos that (1) enables specifying tasks with a human video and (2)
generalizes to unseen environments by training on diverse videos.

is still fundamentally limited by the amount of robot data we
can collect. Alternatively, there exists vast amounts of pre-
collected video data of humans interacting in semantically
interesting ways in their environments [10, 11]. This data is
diverse, spanning people and environments across the globe,
and tasks ranging from assembling objects to doing the dishes.
While the embodiment in these videos is different than that
of our robots, if we could leverage this data in robot learning
it could greatly boost generalization to unseen tasks, environ-
ments, and objects. We study exactly this in our recent work
[3], where we learn reward functions on diverse human video
data [10], and measure how well the learned reward functions
generalize to held out tasks and environments. We observed
that by training with diverse human videos, the learned reward
performed over 20% more effectively on unseen environments
and tasks, suggesting that diverse human videos can be a
promising path towards broader generalization (See Figure 3).
In my most recent work [19], we pushed on this direction
further, pre-training a visual representation on human video
data, and showing that this representation enabled more data
efficient learning of downstream robotic manipulation tasks.

Future Work. In my ongoing and future research I aim
to scale up along all three directions. We still lack large and
diverse robot datasets, and in an ongoing project we aim to
bring robots into real homes, collecting a robot dataset that
is truly reflective of the environments humans operate in.
Furthermore, we continue to push on scaling up our offline
learning algorithms, specifically towards the goal of a single
large model that can consume all of the robot data we have
collected, simulated robot data, videos of humans, and natural
language, and produce an agent which can perform tasks
effectively while also generalizing broadly.

Lastly, a number of other important problems remain to-
wards the goal of generalist robots. First, even with gen-
eralizable policy trained on large amounts of data, such a
model needs to (1) be safe in the new environment and avoid
catastrophic failures, and (2) learn quickly and adapt from
any mistakes. Safety during deployment, and the ability to
quickly adapt a policy given a few corrections are an important
component of my future work, and I believe this direction will
be critical to making any robot trained on large scale data
deployable in the real world.
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